Spatio-Temporal Analysis Using Earth Observation Data to Identify Adverse Health Effects of Landscape Fires

Adeleh Shirangi, Alex Xiao, Ivana Ivanova, **Peter Franklin**, Ting Lin, Grace Yun, Emmanuel Ongee, Le Jian, Bradley Santos, Nathan Eaton, Ashraf Dewan, Paula Fievez

26 May 2020

Slide 1

Government of **Western Australia** Department of **Health**

Background and Aim

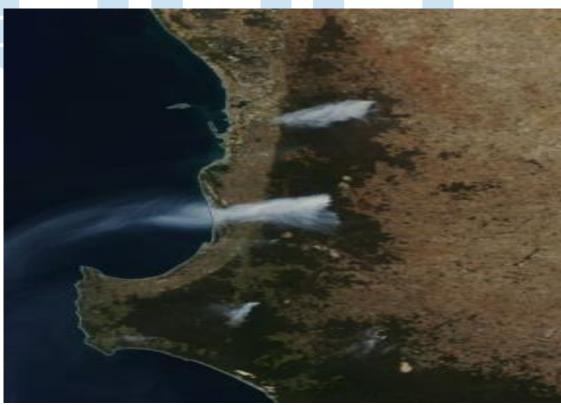
- Landscape fires (LF bush/wild fires and planned burns) create smoke that can affect health
- Understanding true effects is limited by exposure assessment
- 'Exposure' assessed by;
 - Ground level monitoring of criteria air pollutants (esp. particulate matter PM)
 - Fire v non-fire periods
 - Area burnt
 - Remote sensing observations

STUDY AIM

To develop an exposure model for LF smoke related PM_{2.5} using earth observation data.

- Apply to health (time-series) study of smoke-related PM_{2.5} and
 - Hospitalisation
 - ED visit

Slide 2


Ambulance call-out

Satellite Image Analysis

- Tracings of smoke plumes were made using hourly true-colour imagery from Himawari 8 satellite image
- Hourly tracings collated for single 24-hr shape file
- Rasterized to 1.5 km x 1.5 km grids (for PM model calculation)
- Develop a smoke plume mask (SPM) for geographical units (Statistical Areas - SA2), ie whether plume covered centroid of SA2.
 - SA2 is the geographical unit used for the health study

Smoke-related PM2.5 Model*

Model inputs (for 1.5 x 1.5km grids)

- PM2.5 lag1 Previous days PM2.5 (interpolated using Inverse Distance Weighting from Perth air quality monitoring sites)
- SPM Smoke Plume Mask (manual process)
- FRP Fire Radiation Power (from Geoscience Australia)
- AOD Aerosol Optical Depth (derived form MODIS data)
- FDR Fire Danger Rating (from Bureau of Meteorology)
- VI Venting Index (from Bureau of Meteorology)

$PMlag0 \sim PMlag1 + SPM + FRP + AOD + FDR + VI$

We calculated the median of PM2.5 values from the gridded cells corresponding to a specific SA2

Quinns Rocks Rolling Gree Wangara laversnam Stirling Perth Swanbourn South Lake Wattleup Rockingham Rockingham

Application – Health study

- PM2.5 categorised: ≤95th percentile, 96th 98th %ile, ≥99th %ile
 - To delineate between 'background' and 'smoke-related' PM2.5
- General Findings:
 - ↑ ED visits and hospitalisations for all-cause, respiratory and CV conditions, but no ↑ in
 ambulance call-outs

Specific Findings:

- 3-10% \uparrow in asthma ED presentations and 2-18% in \uparrow asthma hospitalisations (NS)
- $8 19\% \uparrow$ in ED presentations for ALRTI
- 2 7% \uparrow in general cardiovascular ED presentations
- Up to 25% \uparrow in ED presentations for transient ischeamic attack
- Vulnerable groups: Increased risks for; people aged 60 years and above, people from low socioeconomic status, and those with heart or lung problems.

Future work

 Addition of data, eg chemical transport models, to improve exposure estimation

- Fine resolution prediction model of smoke trajectory
 - Early/real-time warning systems
 - Manual tracings of plumes time intensive. Automation is required.

