Impact of the COVID-19 Containment Measures on Air Pollution in California

Aaron Naeger

University of Alabama in Huntsville/NASA, Huntsville, AL

Naeger, A. R., and K. M. Murphy (to be submitted AAQR)

TROPOMI L3 Maps and Containment Measures in CA

34°N

39°N

38°N

37°N

36°N

35°N

34°N

33°N

39°N

38°N

37°N

36°N

35°N

34°N

30

NASA

7

6

3

2

0

Column Density (10¹⁵

Tropospheric NO₂

^{33°N} 123°W 122°W 121°W 120°W 119°W 118°W 117°W 116° ³³°N 123°W 122°W ^{33°N} 123°W 122°W 119°W 118°W 117°W 116° 120°W 119°W 118°W 117°W 116° 121°W 120°W 121°W

34°N

- Seasonal / meteorological factors drove the tropospheric NO₂ reduction during second week of March (9-13 March) when less strict containment measures led to relatively small decreases in
- Steep decreases in VMT during the week of statewide "shelter in place" order (16-20 March) were coincident with strong NO₂ reductions
- Weekend compared to weekday effect becomes stronger during the post-initiation period of COVID-19 containment measures

Naeger, A. R., and K. M. Murphy (to be submitted AAQR)

TROPOMI L3 Maps - 2019 vs 2020

118°W 117°W 116° 123°W 122°W

33°N 123°W

122°W 121°W

Mar-Apr 2019

121°W

120°W

- Tropospheric NO₂ levels were significantly lower across major cities in CA during COVID-19 containment period in 2020 compared to the analogous time period in 2019
 - Los Angeles 47% reduction
 - San Francisco 24% reduction
 - Bakersfield 25% reduction
 - Fresno 35% reduction

Column Density

Tropospheric NO

117°W 116°

118°W

Different meteorological conditions likely contributed to the more drastic NO₂ reduction in 2020 as shown by TROPOMI L3 maps during pre-lockdown period (Feb-Mar 2019 vs 2020)

NO₂ Climatology from OMI Observations

- Long-term NO₂ from OMI L3 gridded data shows similar NO₂ reductions in Los Angeles and San Francisco compared to TROPOMI, but smaller reductions over Central Valley along SR-99
- Coarser resolution of OMI (0.25°) likely underestimating localized areas of NO₂ columns associated with fine-scale emissions in Central Valley.
- Aggressive air quality regulations adopted in California to reduce emissions can explain part of the decrease in NO₂ during this 8-year period
 Naeger, A. R., and K. M. Murphy (to be submitted AAQR)

Ground-based Measurements from CARB

- Surface NO₂ difference in Los Angeles from 2019 to 2020 is consistent with the 40-50% reduction observed from space by TROPOMI / OMI during the COVID-19 period
- Daily averaged PM2.5 concentrations show a similar decline as NO₂ throughout much of March 2020 that remain well below same period in 2019
- During analogous 5-week periods in 2019 and 2020, averaged PM2.5 concentrations were about 9.9 and 6.1 µg m⁻³, which closely resembles the decrease in surface NO₂.
- Ground-based measurements suggest that the COVID-19 containment measures led to a reduction in emissions that contributed to a decrease in air pollution at the surface

Naeger, A. R., and K. M. Murphy (to be submitted AAQR)

TROPOMI Observes Pollution Reduction over South Asia

 First look at TROPOMI L3 imagery over India shows strong NO₂ reductions in North India and Pakistan in addition to HCHO

 5^{5} molec./cm²)

(10¹⁵ 1

15

0 C 10 10 Tropospheric HCHO

Column

 Biomass burning and other natural emissions contributing to some areas of increases in trace gases in west India, Myanmar, and Bangladesh